Mechatronic Modeling and Design with Applications in Robotics

Analytical Modeling (Part 1)

Representation of the input-output relationship of a physical system.

- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

Input/output vectors are continuous-time signals

- Discrete-time system
- Input/output vectors are discrete-time signals
- Continuous-time system
- Mass-spring-damper system

$$
M y^{\prime \prime}(t)=f(t)-B y^{\prime}(t)-K y(t)
$$

- RLC circuit

$$
v(t)=R i(t)+L \frac{d i(t)}{d t}+\frac{1}{\mathrm{C}} \int i(t) d t
$$

- Discrete-time System
- Digital computer
- Dailv balance of a bank account

$y[k]$: balance at k-th day u[k] : deposit/withdrawal a : interest rate
- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

Memoryless system: Current output depends on ONLY current input.
Causal System: Current output depends on current and past input.
Noncausal system: Current output depends on future input.

- Memoryless system
- Spring: input $f(t)$, output $x(t) \rightarrow \underset{\sim}{f(t)}=k x\left(t_{s}\right)$
- Resistor: input $v(t)$, output $i(t) \rightarrow v(t)=\operatorname{Ri}(t)$
- Causal System
- Input: acceleration; output: position of a car

Current position depends on not only current acceleration, but also all the past accelerations.

- Noncausal System does not exist in real world; it exists only mathematically. (We only consider causal systems)
- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

For a causal system, (Current/future input) (past input)

To Memorize this info, we use a state vector $x\left(t_{0}\right)$

Lumped system: State vector is finite dimensional
Distributed system: State vector is infinite dimensional

Example

- Lumped System

- Distributed System

Model Classification

- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

For a causal system, $\left.\begin{array}{c}x\left(t_{0}\right) \\ u(t), t \geq t_{0}\end{array}\right\} \rightarrow y(t), t \geq t_{0}$
Time-invariant system: For any time shift T,

$$
\left.\begin{array}{c}
x\left(t_{0}+T\right) \\
u(t-T), t \geq t_{0}+T
\end{array}\right\} \Rightarrow y(t-T), t \geq t_{0}+T
$$

Time-varying system: Not time-invariant

- Car, Rocket etc.

If we regard M to be constant (even though M changes very slowly), then this system is time-invariant.

$$
M y^{\prime \prime}(t)=u(t)
$$

(Laplace applicable)

If we regard M to be Changing (due to fuel consumption), then this system is time-varying.

$$
M(t) y^{\prime \prime}(t)=u(t)
$$

(Laplace not applicable)

Model Classification

- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

For a causal system,
output $y=f(x)$, input

$$
\left.\begin{array}{c}
x_{i}\left(t_{0}\right) \\
u_{i}(t), t \geq t_{0}
\end{array}\right\} \Rightarrow y_{i}(t), t \geq t_{0}, i=1,2
$$

Linear system: A system satisfying superposition property

$$
\left.\begin{array}{c}
\alpha_{1} x_{1}\left(t_{0}\right)+\alpha_{2} x_{2}\left(t_{0}\right) \\
\alpha_{1} u_{1}+\alpha_{2} u_{2}(t), t \geq t_{0} \\
t \geq t_{0} \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}
\end{array}\right\} \rightarrow \alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t), \quad \begin{aligned}
& y=f(x) \\
& \text { flomogeniaty }
\end{aligned} \quad \begin{aligned}
& \\
& \alpha y=f(\alpha x)
\end{aligned}
$$

Nonlinear system: A system that does not satisfy superposition property.

$$
y_{1}=5 x_{1}+1 v
$$

$$
\begin{array}{ll}
y=5 x . & x=x_{1} \Rightarrow y_{1}=5 \cdot x_{1} \\
& x=x_{2} \Rightarrow y_{2}=5 \cdot x_{2} \\
& x=x_{1}+x_{2} \Rightarrow y=5\left(x_{1}+x_{2}\right)
\end{array}
$$

$$
x=x_{2}
$$

$$
y_{2}=5 x_{2}+1
$$

$$
x=x_{1}+x_{2}
$$

$$
y=5\left(x_{1}+x_{2}\right)+1
$$

$$
=5 x_{1}+5 x_{2}+(1)
$$

$$
\neq y_{1}+y_{2}=5 x_{1}+1+
$$

$$
=5 x_{1}+5 x_{2}+10
$$

- All systems in real world are nonliear. Simple.

Linearization
$f(t)=K y(t) \rightarrow \quad$ This linear relation holds only for small $y(t)$ and $f(t)$

- However, linear approximation is often good enough for control purposes
- Linearization: approximation of a nonlinear system by linear system around some operating point

$$
\begin{aligned}
& m L^{2} \ddot{\theta}(t)=T(t)-m g L \sin \theta(t) \text { non-linear team. } \\
& \theta \rightarrow 0^{\circ} \quad \sin \theta \approx \theta \text { m gL } \theta(t)
\end{aligned}
$$

$$
\theta_{0}, 0
$$

series expansion

State Space MIodel

Linear State-Space Models

Page 19 of 26
 Continuous-time $\left\{\begin{array}{l}y=c x+\quad \text { Discrete-time }\end{array}\right.$ difference equattor. $\left\{\begin{aligned} \frac{d x(t)}{d t} & =A(t) x(t)+B(t) u(t) \\ y(t) & =C(t) x(t)+D(t) u(t)\end{aligned}\right.$
(1) $\{x[k+1]=A[k] x[k]+B[k] u[k]$

$t \in \mathbb{R}$ (Real number)

- The first equation, called state equation, is a first order ordinary differential (CT case) and difference (DT case) equation.
- The second equation, called output equation, is an algebraic equation.
- Two equations are called state-space model.

- If a system is time-invariant, the matrices A, B, C, D are constant (independent of $\underbrace{\text { time }}$)
- Pay attention to sizes of matrices and vectors. They must by always compatible!

$$
\begin{aligned}
& x=\text { states. } \quad y=\text { inputs. } \quad \text { vectors. } \\
& x=\text { inputs }
\end{aligned}
$$

The State Space Model

Consider a general n th-order model of a dynamic system:

$$
\frac{d^{n} y(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}}+\cdots+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{n} \frac{d^{n} u(t)}{d t^{n}}+b_{n-1} \frac{d^{n-1} u(t)}{d t^{n-1}}+\cdots+
$$

$$
b_{1} \frac{d u(t)}{d t}+b_{0} u(t) \text { input }
$$

Assuming all initial conditions are all zeros.
Step of Covering system equation \rightarrow stable space model.
n. lIst order differential equation.

Goal: to derive a systematic procedure that transforms a differential equation of order n to a state space form representing a system of n first-order differential equations.

State equation:

$$
\dot{x}=A x+B u=1 s t \text { order differential equation }
$$

Consider a dynamic system represented by the following differential equation: equation

$$
y^{(6)}+6 y^{(5)}-2 y^{(4)}+y^{(2)}-5 y^{(1)}+3 y=7 u^{(3)}+u^{(1)}+4 u
$$

states
where $y^{(i)}$ stands for the i th derivative: $y^{(i)}=d^{i} y / d t$. Find the state space mode of the above system.

Example: Mass with a Driving Force

- By Newton's law, we have

$$
\begin{aligned}
\tilde{F F}=m a \\
\mu(t)=m(\alpha=M \dot{y}(t) \\
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y(t) \\
\dot{y}(t)
\end{array}\right] \dot{x}=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
\dot{y}(t) \\
\dot{y}(t)
\end{array}\right] u(t) \\
u(t)=M \ddot{y}(t)
\end{aligned} \quad\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=c x+D a
\end{array}\right.
$$ $M \ddot{y}(t)=u(t)$

u : input force
y : output position

- Define state variables: $x_{1}(t)=y(t), x_{2}=\dot{y}(t) \ddot{y}(t)=\frac{1}{M} \mu(t)$ s ouput ;

State:
e. $\left[\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{l}\dot{y}(t) \\ \dot{y}(t)\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]+\left[\begin{array}{c}0 \\ \frac{1}{M}\end{array}\right] u(t)$
$\dot{x}(t)$

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } (t) = \dot { y } _ { 1 } (t) = x _ { 2 } (t) } \\
{ \dot { x } _ { 2 } (t) = \ddot { y } (t) = \frac { 1 } { M } u (t) } \\
{ y (t) = x _ { 1 } (t) }
\end{array} \left\{\begin{array}{l}
\frac{d}{d t}\left[\begin{array}{l}
\dot{x}_{1}(t) \\
x_{1}(t) \\
x_{2}(t)
\end{array}\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{M}
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.\right.
$$

$$
\left.\left.\begin{array}{l}
A_{2 \times 2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
B=\left[\frac{1}{M}\right.
\end{array}\right] . \begin{array}{ll}
1 & 0
\end{array}\right]
$$

- By Newton's law

$$
\begin{aligned}
& M \ddot{y}(t)=u(t)-B \dot{y}(t)-k y(t) \\
& \underbrace{\ddot{y}}_{\dot{j}(t)}=\frac{1}{M} \mu(t)-\frac{B}{M} \dot{y}(t)-\frac{K}{M} y(t)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array}\right.
$$

- Define state variables $\quad\{y=c x+D u$

$$
x^{x_{1}}(t)=y(t), \mathrm{x}_{2}(t)=\dot{y}(t)
$$

$\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right] \overrightarrow{\dot{x}}=\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{c}\dot{j}(t) \\ \dot{y}(t)\end{array}\right]$

$$
\left\{\begin{array}{c}
\frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-K / M & -B / M
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / M
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.
$$

- $u(t)$: input voltage
- $y(t)$: output voltage
- By Kichhhoff's voltage law
$u(t)=\operatorname{Ri}(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int i(\tau) d \tau$
$\Lambda_{\text {put }}$$\quad\left\{\left.\begin{array}{l}x=A x+B u \\ y=C x+D u-u(t)\end{array} \quad C \frac{\Gamma}{T} \right\rvert\, y(t)\right.$
Define State Variables (current for inductor, voltage for capacitor):
$x_{1}(t)=i(t), x_{2}(t)=\frac{1}{c} \int i(\tau) d \tau$

The End!!

