
Mechatronic Modeling and Design with 
Applications in Robotics

Analytical Modeling (Part 1)



Representation of the input-output relationship of a physical system. 
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Physical 
System

Input Output

Acceleration Car Position
Voltage Circuit Current
Deposit Bank Account Balance

Model

Modeling



§ Continuous-time and discrete-time

§ Memoryless, causal and noncausal

§ Lumped and distributed

§ Time-invariant and time-varying

§ Linear and nonlinear
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Input/output vectors are continuous-time signals

§ Discrete-time system
§ Input/output vectors are discrete-time signals
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§ Continuous-time system
– Mass-spring-damper system
!"!! # = % # − '"! # − ("(#)
– RLC circuit

+ # = ,- # + / "# $"$ + %
&∫ - # 1#

§ Discrete-time System
– Digital computer
– Daily balance of a bank account
" 2 + 1 = 1 + 4 " 2 + 5 2
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§ Continuous-time and discrete-time

§ Memoryless, causal and noncausal

§ Lumped and distributed

§ Time-invariant and time-varying

§ Linear and nonlinear
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Memoryless system: Current output depends on ONLY current input.

Causal System: Current output depends on current and past input.

Noncausal system: Current output depends on future input.
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§ Memoryless system

– Spring: input f(t), output x(t)è % # = 26 #
– Resistor: input v(t), output i(t)è + # = ,- #

§ Causal System
– Input: acceleration; output: position of a car

Current position depends on not only current acceleration, but also all the past accelerations.

§ Noncausal System does not exist in real world; it exists only 

mathematically. (We only consider causal systems)
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§ Continuous-time and discrete-time

§ Memoryless, causal and noncausal

§ Lumped and distributed

§ Time-invariant and time-varying

§ Linear and nonlinear
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For a causal system,
(Current/future input)
(past input)

To Memorize this info, we use a state vector x(t0)
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Current/Future output 

x(t0)
System

t0: current time

Lumped system: State vector is finite dimensional
Distributed system: State vector is infinite dimensional



§ Lumped System

§ Distributed System
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§ Continuous-time and discrete-time

§ Memoryless, causal and noncausal

§ Lumped and distributed

§ Time-invariant and time-varying

§ Linear and nonlinear
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For a causal system, !" #!
$ # , # ≥ #! è ' # , # ≥ #!

Time-invariant system: For any time shift T,

!" #! + )
$ # − ) , # ≥ #! + ) è ' # − ) , # ≥ #! + )

Time-varying system: Not time-invariant 
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§ Car, Rocket etc. 
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Mu(t)

y(t)

M(t)u(t)

y(t)

If  we regard M to be constant
(even though M changes very
slowly), then this system is 
time-invariant.

!"77 # = % #
(Laplace applicable)

If  we regard M to be Changing
(due to fuel consumption), 
then this system is 
time-varying.

! # "77 # = % #
(Laplace not applicable)



§ Continuous-time and discrete-time

§ Memoryless, causal and noncausal

§ Lumped and distributed

§ Time-invariant and time-varying

§ Linear and nonlinear
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For a causal system,

!"" #!
$" # , # ≥ #! è'" # , # ≥ #!, + = 1, 2

Linear system: A system satisfying superposition property

!/#"# #! + /$"$ #!
/#$# + /$$$ # , # ≥ #! è/#'# # + /$'$ # ,
# ≥ #! ∀/#, /$ ∈ ℝ

Nonlinear system: A system that does not satisfy superposition property.
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§ All systems in real world are nonliear.

3 # = 4' # è This linear relation holds only for small y(t) and f(t)

§ However, linear approximation is often good enough for control purposes

§ Linearization: approximation of a nonlinear system by linear system around some 
operating point 
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State Space Model



Continuous-time Discrete-time

5
%& '
%' = 6 # " # + 7 # $ #
' # = 8 # " # + 9 # $ #

:" ; + 1 = 6 ; " ; + 7 ; $ ;
' ; = 8 ; " ; + 9 ; $ ;

# ∈ ℝ (Real number) ( ∈ ℤ (Integers)
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x: state vector
u: input vector
y: output vector
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§ The first equation, called state equation, is a first order ordinary differential (CT case) 

and difference (DT case) equation.

§ The second equation, called output equation, is an algebraic equation.

§ Two equations are called state-space model.

§ If a system is time-invariant, the matrices A, B, C, D are constant (independent of 

time).

§ Pay attention to sizes of matrices and vectors. They must by always compatible!
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Consider a general nth-order model of a dynamic system:
%!( '
%'! + <)*# %

!"#( '
%'!"# +⋯+ <# %( '

%' + <!' # = >) %
!+ '
%'! + >)*# %

!"#+ '
%'!"# +⋯+

># %+ '
%' + >!$ #

Assuming all initial conditions are all zeros.

Goal: to derive a systematic procedure that transforms a differential equation of order n to
a state space form representing a system of n first-order differential equations.
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Consider a dynamic system represented by the following differential equation: 
'(-) + 6'(/) − 2'(0) + '($) − 5'(#) + 3' = 7$(1) + $(#) + 4$

where '(") stands for the ith derivative: '(") = D"'/D#. Find the state space model of the 
above system. 
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§ By Newton’s law, we have
F'̈ # = $ #

u: input force
y: output position

§ Define state variables: "# # = ' # , "$ = '̇ #

§ Then,

"̇# # = '̇# # = "$ #
"̇$ # = '̈ # = #

2$ #
' # = "# #

è

%
%'

"# #
"$ # = 0 1

0 0
"# #
"$ # +

0
!
"

$ #

' # = 1 0 "# #
"$ #
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§ By Newton’s law
F'̈ # = $ # − 7'̇ # − ;' #

§ Define state variables
"# # = ' # , x$ # = '̇ #

D
D#

"# #
"$ # = 0 1

−4/F −7/F
"# #
"$ # + 0

1/F $ #

' # = 1 0 "# #
"$ #
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§ u(t): input voltage
§ y(t): output voltage
§ By Kichhhoff’s voltage law

$ # = K+ # + L %"(')%' + #
3 ∫ + N DN

Define State Variables (current for inductor, voltage for capacitor):

"# # = + # , "$ # = #
3 ∫ + N DN

D
D#

"# #
"$ # = −K/L −1/L

1/8 0
"# #
"$ # + 1/L

0 $ #

' # = 0 1 "# #
"$(#)
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The End!!


